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(H,-doped) Hydrocarbon Lean Flames

-k Hydrocarbon Combustion at Lean flammability limit yields

low NOx

-k Low operating temperatures cause low flame speeds and

are susceptible to flame instability

=k Hydrogen enrichment substantially improves the flame speed

and extinction characteristics



Pressure & Fuel Influence — Different Models

Flame Angle (dimensionless): Computed vs. Measured
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Algebraic Flame Surface Wrinkling Model

General reaction rate expression V_\/C = puSL |O Z
Damkohler's hypothesis

—— 2 Folding factor 2’ = Flame % 3
Wturb. Iam surface area / Volume S
Reaction locally L Surface density function

am.— Pu

similar to laminar ‘VC‘Q 2 Y2
Wiam. = Py * St \ ( J

Premixed tirbulent flame

N
A i: f (Re,U', p,...)
Turbulent flame 4//' A t

surface area

—— A Thatis, all the statistical properties of turbulent

premixed flames are universally and

_ —_ _ o unambiguosly controlled by: the length scale,
Projected flame Premixed ‘ mean dissipation rate, viscosity and chemical
surface area flow time scale
by Muppala and Dinkelacker ECM 2003

Prog. CFD 4, 328, 2004



Novel Submodel for Turbulent Flame Speed
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Novel Submodel - in older form
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Turbulent flame speed proportional to 1/Le is

similar to one of the Bradley's ST relations (shown by Driscoll in
yesterday's presentation),

but has been independantly obtained



Correlation plots — All hundred+ data
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Five different flames

Hydrocarbons (HC) Exp Num

1. High-jet enveloped flame ... —== | Done (14 bar)
2. GT burner-combustor flame h |
l 5{"_" Done (32 bar)
Le <=2.3
Hydrogen and Hydrocarbons
Analytical
3. Expanding spherical flame m e\?:lgalt‘i:Sn
HC & Hydrogen-doped HC flames In progress
4. Bunsen-like flame w (9 bar)
5. Novel Wide-angled Diffuser flame 7
“_ Planned

1. Griebel et al., (Switzerland) 3. Kido et al., (Japan) 5. Lawn (UK)
2. ALSTOM (Switzerland) 4. Gokalp et al. (France)



Flame 1

H,-doped Premixed Turbulent Flames - Haiter et al.

Nine lean (¢=0.6) CH, Bunsen flames

Pressure 1, 5, 9 bar; u'/S, ;< 5.5

H,-doped levels — 0, 10, 20 vol %
(with global ¢ constant)

Burner radius, 12.5 mm

Fabien Halter, Doctoral thesis, Uni. Orleans, 2005



Flame 1

HC Premixed Turbulent Flames - Haiter et al.

Recent Numerical Simulations vs. Experimental data
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Variation of Pressure —

Pure methane-air mixtures for ¢=0.6

Comb. FI. (in preparation)




Flame 1

HC & H,-doped Premixed Turbulent Flames - Haiter et al.

Recent Numerical Simulations vs. Experimental data
1
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Flame 2

HC & H,-doped Premixed Turbulent Flames Lawn & schefer

Novel wide-angled

diffuser flame
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Stuaied flames - 15
(6 pure CH, mixtures)

Mixed (CH,:H,—3:1)
1<u/S <6
U=2.0&3.0m/s

Measured

Turbulent Displacement Speed

compared with

Model‘s

Turbulent Flame speed
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Bradley‘s relation

S, =0.88-u"(KaLe) ™
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Present relation \
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wa from Halter et al. Comb. Sym. Oy

Lawn and Schefer: Comb. FIl. 2006




Flame 2

HC & H,-doped Premixed Turbulent Flames Lawn & schefe

Difference due to lack of
PD effects in the models
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Preferential Diffusion Effect

—= 1 Stream line
<: Higher Diffusive Reactant, D,
—< * Lower Diffusive Reactant, D,

Burned | .
- Reaction

sheet

Unburned
(Fuel-O,-N,)

In case of CH, or H, mixtures, In case of C,H, or C;Hg mixtures,
Fuel is D, and O, is D, Fuel is D,and O, is D,,

Nakahara : Private communication 2006




A submodel for Chemical Time Scale

1-Both Le and PD effects can be incorporated into the
S; closure based on the concept of leading points — propagation of

premixed turbulent flame is controlled by the leading flamelets
advancing farthest into the unburned gas

1 In other words, "out of several local reacting structures, those with the
highest instantaneous speed rush along other structures and control the
turbulent flame speed, which is a strong function of physicochemical

characteristics of such leading flamelets via the (critical) chemical time
scale t_" Lipatnikov and Chomiak

Lipatnikov and Chomiak: CST 1998



A submodel for Chemical Time Scale

Step 1 Step 2
1/4 0.2
0.2 4 0.2 4
ST — SLO + A (U 0.8 SLOO'Z)(th (pj A 'SLo /Ti/o =A- SLl /Tn]:/r
exp(Le—1) (7)) \ P
3= A, (given), A, (unknown)
are model constants
- AL . .
—7 (limu max{u (t 1F A, estimated from reaction
c0 (t—>oo ¢ )/ { C( )}ﬁ= ; submodel
Cri_tical chemical time scale is deemed % Steps 1 & 2 are analysed for
to include both PD and Le effects hydrogen influence

Critical chemical time scale = chemical time scale x consumption rate (of
undisturbed planar laminar flame)/maximum possible local consumption rate

Lipatnikov and Chomiak :
Combust. Sym. 1996, CST 1998, PECS 2005 ASME Int. Mech. Congress & Expo 2006

Lipatnikov : Private communication 2006
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